On the Clebsch-Gordan coefficients for the two-parameter quantum algebra $\operatorname{SU}(2)_{\mathrm{p}, \mathrm{q}}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 265177
(http://iopscience.iop.org/0305-4470/26/19/045)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:45

Please note that terms and conditions apply.

COMMENT

On the Clebsch-Gordan coefficients for the two-parameter quantum algebra $S U(2)_{p, q}$

Stjepan Meljanac \dagger and Marijan Mileković \ddagger
\dagger Rudjer Boškovic Institute, Bijenicka c. 54, 41001 Zagreb, Croatia
\ddagger Prirodoslovno-Matematički fakultet, Department of Theoretical Physics, Bijenička
c. 32, 41000 Zagreb, Croatia

Received 5 March 1993

Abstract

We show that the Clebsch-Gordan coefficients for the $S U(2)_{p, q}$ algebra depend on a single parameter $Q=\sqrt{p q}$, contrary to the explicit calculation of Smirnov and Wehrhahn.

Recently, the Clebsch-Gordan problem for the two-parameter quantum algebra $\operatorname{SU}(2)_{p, q}$ was analysed [Smirnov and Wehrhahn 1992]. It was claimed that the corresponding Clebsch-Gordan coefficients do depend on the two deforming parameters p and q.

In this comment we show that the Clebsch-Gordan coefficients depend effectively only on one parameter $Q=\sqrt{p q}$, and that $S U(2)_{p, q}$ is isomorphic to $S U(2)_{Q}$, both as algebras and Hopf co-algebras. Our results are in agreement with Drinfeld (1989).

We recall the $S U(2)_{p, q}$ algebra defined by Smirnov and Wehrhahn (1992) (p and q are real parameters):

$$
\begin{align*}
& {\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm}} \\
& {\left[J_{+}, J_{-}\right]_{p, q}=J_{+} J_{-}-p q^{-1} J_{-} J_{+}=\left[2 J_{0}\right]_{p, q}} \\
& {\left[2 J_{0}\right]_{p, q}=\frac{q^{2 J_{0}}-p^{-2 J_{0}}}{q-p^{-1}}} \\
& \left(J_{0}\right)^{+}=J_{0} \quad\left(J_{ \pm}\right)^{+}=J_{\mp} . \tag{1}
\end{align*}
$$

The coproduct Δ is:

$$
\begin{align*}
& \Delta\left(J_{ \pm}\right)=J_{ \pm} \otimes p^{-J_{0}}+q^{J_{0} \otimes J_{ \pm}} \\
& \Delta\left(J_{0}\right)=J_{0} \otimes 1+1 \otimes J_{0} . \tag{2}
\end{align*}
$$

The finite dimensional unitary irreducible representation (IRREP) D^{j} of $\operatorname{spin} j$ contains the highest weight vector $\langle j j\rangle$, satisfying

$$
\begin{gather*}
J_{0}|j\rangle=j|j j\rangle \\
J_{+}|j j\rangle=0 \\
\langle j \mid j\rangle=1 . \tag{3}
\end{gather*}
$$

The other orthonormalized states of IRREP $D^{i},|j m\rangle$, with $-j \leqslant m \leqslant j$, satisfy

$$
\begin{align*}
& J_{+}|j m\rangle_{p, q}=\left(p q^{-1}\right)^{1 / 2(j-m-1)} \sqrt{[j-m]_{p, q}[j+m+1]_{p, q}}|j m+1\rangle_{p, q} \\
& J_{-}|j m\rangle_{p, q}=\left(p q^{-1}\right)^{1 / 2(j-m)} \sqrt{[j+m]_{p, q}[j-m+1]_{p, q}}|j m-1\rangle_{p, q} \\
& J_{0}|j m\rangle_{p, q}=m|j m\rangle_{p, q} . \tag{4}
\end{align*}
$$

Now, we define the $S U(2)_{Q}$ algebra with three generators $\left(J_{ \pm}\right)_{Q}$ and $\left(J_{0}\right)_{Q}$:

$$
\begin{align*}
& {\left[\left(J_{0}\right)_{Q},\left(J_{ \pm}\right)_{Q}\right]= \pm\left(J_{ \pm}\right)_{Q}} \\
& {\left[\left(J_{+}\right)_{Q},\left(J_{-}\right)_{Q}\right]=\left[2\left(J_{0}\right)_{Q}\right]_{Q}} \\
& {[n]_{Q}=\frac{Q^{n}-Q^{-n}}{Q-Q^{-1}}=(p / q)^{1 / 2(n-1)}[n]_{P . Q}} \tag{5}
\end{align*}
$$

with the coproduct

$$
\begin{aligned}
& \Delta\left(\left(J_{ \pm}\right)_{Q}\right)=\left(J_{ \pm}\right)_{Q} \otimes Q^{-\left(J_{0}\right)_{Q}+Q^{+\left(J_{0}\right)_{Q}} \otimes\left(J_{ \pm}\right)_{Q}} \\
& \Delta\left(\left(J_{0}\right)_{Q}\right)=\left(J_{0}\right)_{Q} \otimes 1+1 \otimes\left(J_{0}\right)_{Q}
\end{aligned}
$$

The relations between the $S U(2)_{p, q}$ generators and the $S U(2)_{Q}$ generators are

$$
\begin{align*}
& J_{+}=(q / p)^{\left.1 / 2 / J_{0}-1 / 2\right)\left(J_{+}\right)_{Q}} \\
& J_{-}=(q / p)^{1 / 2\left(J_{0}+1 / 2\right)}\left(J_{-}\right)_{Q} \\
& J_{0}=\left(J_{0}\right)_{Q} . \tag{7}
\end{align*}
$$

It is easy to show that relations (7) map equations (1) and equations (5) one into another. Moreover, the $S U(2)_{p . q}$ coproduct is identical to the $S U(2)_{Q}$ coproduct, $\Delta_{p, q}=\Delta_{Q}$:

$$
\begin{align*}
& \Delta_{p . q}\left(J_{0}\right)=\Delta_{Q}\left(J_{0}\right)=J_{0} \otimes 1+1 \otimes J_{0} \\
& \begin{aligned}
\Delta_{p, q}\left(J_{ \pm}\right) & =\Delta_{Q}\left(J_{ \pm}\right)=\Delta_{Q}\left((q / p)^{1 / 2\left(J_{0} \mp 1 / 2\right)}\left(J_{ \pm}\right)_{Q}\right) \\
& =J_{ \pm} \otimes p^{-J_{0}}+q^{J_{0}} \otimes J_{ \pm} .
\end{aligned}
\end{align*}
$$

This is also true for the antipode $\gamma_{p . q} \equiv \gamma_{Q}$, the counit $\varepsilon_{p, q} \equiv \varepsilon_{Q}$, the states $|j m\rangle_{p, q} \equiv|j m\rangle_{Q}$ and the Casimir operator $\left(C_{2}\right)_{p, q} \equiv\left(C_{2}\right)_{Q}$. Thus we have proved the Hopf-algebra isomorphism between $S U(2)_{p, q}$ and $S U(2)_{Q}$. As a consequence of this isomorphism, the p, q Clebsch-Gordan coefficients of $S U(2)_{p, q}$ should be identical to those of $S U(2)_{Q}$.

Returning to the Smirnov and Wehrhahn paper, one can immediately show, using our equation (5) and $[n]_{p . q}=(q / p)^{(n-1) / 2}[n]_{Q}$, that all the equations in section 2 of their paper can be reduced to the equations with single parameter Q. Particularly, the states in equation (2.7) can be written as $|j m\rangle_{p, q}=|j m\rangle_{Q}$. Therefore, the projection operator $P_{m m^{\prime}}^{\prime}=|j m\rangle\left\langle j m^{\prime}\right|$ also has to be expressed in terms of the Q-parameter only. However, their projection operator, eq. (3.7), is wrong since it explicitly depends on the (p / q) parameter and does not satisfy the projection property $\left(P_{m m}^{i}\right)^{2}=P_{m m}^{j}$. Hence, all the subsequent formulae in section 5 (starting with the equation (5.3)) are incorrect. For example, the Clebsch-Gordan coefficients given in table 1 do not satisfy the orthonormality relations (4.10).

The correct formula for the projection operator should read

$$
\begin{align*}
& p_{m m^{\prime}}^{j}=\left(\frac{p}{q}\right)^{-1 / 4(j-m)(j-m-1)} \sqrt{\frac{[j+m]_{p, q}!}{[2 j]_{p, q}![j-m]_{p, q}!}} J_{-}^{j-m} P^{i} j_{+}^{j-m^{\prime}} \\
& \times\left(\frac{p}{q}\right)^{-1 / 4\left(i-m^{\prime}\right)\left(\mathcal{C}^{\left.-m^{\prime}-1\right)}\right.} \sqrt{\frac{\left[j+m^{\prime}\right]_{p, q}!}{[2]_{p, q}!\left[j-m^{\prime}\right]_{p, q}!}} \\
& \equiv\left(P_{m m^{\prime}}^{j}\right)_{Q} \tag{9}
\end{align*}
$$

Using this projector we obtain the Clebsch-Gordan coefficients which depend on the single parameter Q. In this way, these Clebsch-Gordan coefficients are identical to those for $S U(2)_{Q}$:

$$
\begin{equation*}
\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{p, q}=\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{Q=\sqrt{p q}} \tag{10}
\end{equation*}
$$

for all $j_{1}, m_{1}, j_{2}, m_{2}, J$ and M.

Acknowledgments

This work was supported by the joint Croatian-American contract NSF JF 999 and the Scientific Fund of Republic of Croatia.

References

Drinfeld V G 1989 Algebra i Analiz 11 (in Russian)
Sminnov Yu F and Wehrhahn R F 1992 J. Phys. A: Math. Gen. 255563

